Kobrossy, L., Wu, W., Zhang, C., Turner, C.E., and Cosgrove, M.S. (2024) Unraveling MLL1-fusion leukemia: Epigenetic revelations from an iPS cell point mutation. Journal of Biological Chemistry. (In Press). DOI: 10.1016/j.jbc.2024.107825
Namitz, K.E.W., Tan, S., and Cosgrove, M.S. (2023). Phase seperation promotes a highly active oligomeric scaffold of the MLL1 core complex for regulation of histone H3K4 methylation. Journal of Biological Chemistry 299 (10) 105204. DOI: 10.1016/j.jbc.2023.105204
Jain, K., Marunde, M.R., Burg, J.M., Gloor, S.L., Joseph, F.M., Poncha, K.F., Gillespie, Z.B., Rodriguez, K.L., Popova, I.K., Hall, N.W., Vaidya, A., Howard, S.A.,Taylor, H.F., Mukhsinova, L., Onuoha, U.C., Patteson, E.F., Cooke, S.W., Taylor, B.C., Weinzapfel, E.N., Cheek, M.A., Meiners, M.J., Fox, G.C., Namitz, K.E.W., Cowles, M.W., Krajewski, K., Sun, Z.W., Cosgrove, M.S., Young, N.L., Keogh, M.C., and Strahl, B.D. (2023) An acetylation-mediated chromatin switch governs H3K4 methylation read-write capability. eLife 12, e82596. https://doi.org/10.7554/eLife.82596
Namitz, K.E.W., Tan, S., and Cosgrove, M.S. (2023) Hierarchical Assembly of the MLL1 core complex regulates H3K4 methylation and is dependent on temperature and component concentration. Journal of Biological Chemistry 299(2) 102874. doi.org/10.1016/j.jbc.2023.102874
Rahman, S., Hoffmann, N.A., Worden, E.J., Smith, M.L., Namitz, K.E.W., Knuston, B.A., Cosgrove, M.S., and Wolberger, C. (2022) Multistate structures of the MLL1-WRAD complex bound to H2B-ubiquitinated nucleosome. PNAS 119 (38), e2205691119. https://doi.org/10.1073/pnas.2205691119
Canning, A.J., Viggiano, S., Fernandez-Zapico, M.E., and Cosgrove, M.S. (2022) Parallel Functional annotation of cancer-associated missense mutations in histone methyltransferases. Scientific Reports 12:18487. doi.org/10.1038/s41598-022-23229-2
Dao, TP., Yang, Y., Presti, M.F., Cosgrove, M.S., Hopkins, J.B., Ma, W., Loh, S.N., and Casteneda, C.A. (2022) Mechanistic insights into enhancement or inhibition of phase separation by different polyubiquitin chains. EMPO Rep. e55056, p1-21, DOI: 10.15252/embr.202255056.
Imran, A., Moyer, B.S., Kalina, D., Duncan, T.M., Moody, K.J., Wolfe, A. J., Cosgrove, M.S.*, and Movileanu, L.*. (2022) Convergent alterations of a protein hub produce divergent effects within a binding site. ACS Chemical Biology Article ASAP DOI: 20.1021/acschembio.2c00273 (* co-corresponding authors)
Imran, A., Moyer, S., Wolfe, A.J., Cosgrove, M.S., Makarov, D.E., and Movileanu, L. (2022). Interplay of affinity and surface tethering in protein recognition.The Journal of Physical Chemistry Letters 13(18), 4021-4028.
Mayse, L.A., Imran, A., Karimi, G., Cosgrove. M.S., Wolfe, A.J., and Movileanu, L. (2022). Disentangling the recognition complexity of a protein hub using a nanopore. Nature Communications 13, 978.
Usher, E.T., Namitz, K.E.W., Cosgrove, M.S., and Showalter, S.A. (2021) Probing multiple enzymatic methylation events in real time with NMR spectroscopy. Biophysical Journal 120 (21), 4710-4721.
Imran, A., Moyer, B.S., Canning, A.J., Kalina, D., Duncan, T.M., Moody, K.J., Wolfe, A.J., Cosgrove, M.S., and Movileanu, L. (2021) Kinetics of the multitasking high-affinity Win binding site of WDR5 in restricted and unrestricted conditions. Biochemical Journal 478, 2145-2161.
Namitz, K.E.W.*, Zheng, T.*, Canning, A.J., Alicea-Velazquez, N., Castenada, C.A.**, Cosgrove, M.S.**, and Hanes, S.D.** (2021) Structural analysis suggests Ess1 isomerizes the carboxy-terminal domain of RNA polymerase II via a bivalent anchoring mechanism. Communications Biology 4, 398. (*co-first authors, **co-corresponding authors)
Zhao, J., Blayney, A., Liu, X., Jin, W. Yan, L., Ha, J., Gandy, L., Canning, A.J., Connelly, M., Yang, C., Liu, X., Xiao, Y., Cosgrove, M.S., Solmaz, S.R., Zhang, Y., Ban. D., Chen, J., Loh, S.N., and Wang, C. (2021) EGCG binds intrinsically disordered N-terminal domain of p53 and disrupts p53-MDM2 interaction. Nature Communications 12, 986.
Dao, T.P., Martyniak, B., Lei, Y. Canning A.J., Colicinio, E., Cosgrove, M.S., Hehnly, H., and Castaneda, C.A. (2019). ALS-linked mutations affect UBQLN2 oligomerization and phase separation in a position- and amino acid sequence dependent manner. Structure 27, 937-951.
Liao, L., Alicea-Velazquez, N.L., Langbein, L., Niu, X., Cai, W., Cho, E., Zhang, M., Debler, E., Yan, Q., Cosgrove, M.S.*, and Yang, H.* (2019). High affinity binding of H3K14ac through collaboration of bromodomains 2, 3, and 5 is critical to the molecular and tumor suppressor functions of PBRM1. Molecular Oncology 13, 811-823. *(Co-corresponding authors)
Karchin, J.M., Ha, J.H., Namitz, K.E., Cosgrove, M.S., and Loh, S.N. (2017) Small molecule-induced domain swapping as a mechanism for controlling protein function and assembly. Scientific Reports 7, 44388. Web
Alicea-Velazquez, N.L., Shinsky, S.A., Loh, D.M., Lee, J.H., Skalnik, D.G., and Cosgrove, M.S. (2016) Targeted disruption of the interaction between WD-40 repeat protein 5 (WDR5) and Mixed Lineage Leukemia (MLL)/SET1 family proteins specifically inhibits MLL1 and SETd1A methyltransferase complexes. Journal of Biological Chemistry (accepted). Web
Jiang, L., Xu, D., Namitz, K.E., Cosgrove, M.S., Lund, R., and Dong, H. (2016) Protein-like nanoparticles based on orthogonal self-assembly of chimeric peptides. Small 37, 5125-5131.
Meyer PA, Socias S, Key J, Ransey E, Tjon EC, Buschiazzo A, Lei M, Botka C, Withrow J, Neau D, Rajashankar K, Anderson KS, Baxter RH, Blacklow SC, Boggon TJ, Bonvin AM, Borek D, Brett TJ, Caflisch A, Chang CI, Chazin WJ, Corbett KD, Cosgrove MS, Crosson S, Dhe-Paganon S, Di Cera E, Drennan CL, Eck MJ, Eichman BF, Fan QR, Ferré-D'Amaré AR, Fromme JC, Garcia KC, Gaudet R, Gong P, Harrison SC, Heldwein EE, Jia Z, Keenan RJ, Kruse AC, Kvansakul M, McLellan JS, Modis Y, Nam Y, Otwinowski Z, Pai EF, Pereira PJ, Petosa C, Raman CS, Rapoport TA, Roll-Mecak A, Rosen MK, Rudenko G, Schlessinger J, Schwartz TU, Shamoo Y, Sondermann H, Tao YJ, Tolia NH, Tsodikov OV, Westover KD, Wu H, Foster I, Fraser JS, Maia FR, Gonen T, Kirchhausen T, Diederichs K, Crosas M, Sliz P. (2016) Data publication with the structural biology data grid supports live analysis. Nature Communications 7, 10882. Web
Shinsky, S.A. and Cosgrove, M.S. (2015) Unique role of the WD-40 repeat protein 5 (WDR5) subunit within the Mixed Lineage Leukemia 3 (MLL3) histone methyltransferase complex. Journal of Biological Chemistry 290, 25819-25833. (Featured on the Journal cover) Web PDF
Shinsky, S.A., Monteith, K.E., Viggiano, S., and Cosgrove, M.S. (2015) Biochemical reconstitution and phylogenetic comparison of human SET1 family core complexes involved in histone methylation. Journal of Biological Chemistry 290, 6361-6375. Web PDF
Seidier, P.M., Shinsky, S.A., Hong, F., Li, Z., Cosgrove, M.S., and Gewirth, D.T. (2014). Characterization of the Grp94/OS-9 chaperone-lectin complex. Journal of Molecular Biology 426, 3590-3605. Web
Shinsky, S.A., Hu, M., Vought, V.E., Ng, S.B., Bamshad, M. J., Shendure, J., and Cosgrove, M.S. (2014). A non-active site SET domain surface crucial for the interaction of MLL1 and the RbBP5-Ash2L heterodimer within MLL family core complexes. Journal of Molecular Biology 426, 2283-2299. Web PDF
Tie, F., Banerjee, R., Saiakhova, A.R., Howard, B., Monteith, K.E., Scacheri, P.C., Cosgrove, M.S., and Harte, P.J. (2014). Trithorax monomethylates histone H3K4 and interacts directly with CBP to promote H3K27 acetylation and antagonize Polycomb silencing. Development 141, 1129-1139. (Faculty of 1000 Exceptional article) Web PDF
Patel, A., Vought, V.E., Swatkoski, S., Viggiano, S., Howard, B., Dharmarajan, V., Monteith, K., Kupakuwana, G., Namitz, K.E., Shinsky, S.A., Cotter, R.J., and Cosgrove, M.S. (2013). Automethylation activities within the Mixed Lineage Leukemia-1 (MLL1) core complex reveal evidence supporting a two-active site mechanism for multiple lysine methylation. Journal of Biological Chemistry 289: 868-884. Web PDF
Cosgrove, M.S. (2012). Writers and Readers: Deconvoluting the harmonic complexity of the histone code. Nature Structural and Molecular Biology 19, 739-740. (Invited commentary). Web
Dharmarajan, V., Lee, J.H., Patel, A., Skalnik, D.G., and Cosgrove, M.S. (2012). Structural basis for WDR5 interaction (Win) motif recognition in human SET1 family histone methyltransferases. Journal of Biological Chemistry 287 (33), 27275-27289. Web PDF
Cosgrove, M.S., Ye. D., Rennie, W.A., Lane. M., and Hanes S.D. (2012). The Bin3 RNA methyltransferase (MePCE) targets 7SK RNA to control transcription and translation. WIRES RNA 3, 633-647. Web
Zhong, S., Hsu, F., Stefan, C.J., Wu, X., Patel, A., Cosgrove, M.S., and Mao, Y. (2012). Allosteric activation of the phosphoinositide phosphatase Sac1 by anionic phospholipids. Biochemistry. 51(15): 3170-7. Web
Mbantenkhu, M., Wang, X., Nardozzi, J.D., Wilkens, S., Hoffman, E., Patel, A., Cosgrove, M.S., and Chen, X.J. (2011). Mgm101 is a Rad52-related protein required for mitochondrial DNA recombination. Journal of Biological Chemistry 286, 42360-70.
Dharmarajan, V. and Cosgrove, M.S. (2011). Biochemistry of the Mixed Lineage Leukemia 1 (MLL1) Protein and Targeted Therapies for Associated Leukemia, Acute Leukemia - The Scientist's Perspective and Challenge. M. Antica (Ed.), ISBN: 978-953-307-553-2, InTech, DOI: 10.5772/19754.
Wollert, T., Patel, A., Lee, Y., Provance, W., Vought, V.E. , Cosgrove, M.S., Mercer, J.A., and Langford, G.M. (2011). Myosin 5a tail associates directly with Rab3A-containing compartments in neurons. Journal of Biological Chemistry 286, 14352-14361.
Patel, A., Vought, V., Dharmarajan, V., and Cosgrove, M.S. (2011). A novel non-SET domain multi-subunit methyltransferase required for sequential nucleosomal histone H3 methylation by the MLL1 core complex. Journal of Biological Chemistry 286, 3359-3369. Web PDF
Cosgrove, M.S. and Patel, A. (2010). Mixed Lineage Leukemia- a structure-function perspective of the MLL1 protein. FEBS Journal 277, 1832-1842. (Invited review). Web
Patel, A., Dharmarajan, V., Vought, V.E., and Cosgrove, M.S. (2009). On the mechanism of multiple lysine methylation by the human Mixed Lineage Leukemia protein-1 (MLL1) core complex. Journal of Biological Chemistry 284, 24242-24256. (Selected as JBC’s Paper of the Week). Web PDF
Patel, A., Dharmarajan, V., and Cosgrove, M.S. (2008). Structure of WDR5 bound to Mixed Lineage Leukemia Protein-1 peptide. Journal of Biological Chemistry 283, 32158-32161. (Accelerated Publication, Featured on the journal cover). Web PDF
Patel, A., Vought, V.E., Dharmarajan, V., and Cosgrove, M.S. (2008). A conserved arginine containing motif crucial for the assembly and enzymatic activity of the Mixed Lineage Leukemia protein-1 core complex. Journal of Biological Chemistry 283, 32162-32175. (Featured on the journal cover). Web PDF
Cosgrove, M.S. (2007) Histone proteomics and the epigenetic regulation of nucleosome mobility. Expert Review of Proteomics 4, 465-478. (Invited Perspective).
Fry, C.J., Norris, A., Cosgrove, M., Boeke, J.D., and Peterson, C.L. (2006) The LRS and SIN domains: Two structurally equivalent but functionally distinct nucleosome surfaces required for transcriptional silencing. Molecular and Cellular Biology 26, 9045-9059.
Cosgrove, M.S. (2006) PHinDing a new histone effector domain. Structure 14, 1096-1098 (Invited commentary).
Cosgrove, M.S., Bever, K., Avalos, J.L., Muhammad, S., Zhang, X., and Wolberger, C. (2006). The structural basis for sirtuin substrate affinity. Biochemistry 45, 7511-7521.
Hyland, E.M., Cosgrove, M.S., Molina, H., Wang, D., Pandey, A., Cotter, R., and Boeke, J.D. (2005) Insights into the role of Histone H3 and Histone H4 core modifiable residues in Saccharomyces cerevisiae. Molecular and Cellular Biology 25, 10060-10070.
Cosgrove, M.S.*, and Wolberger, C. (2005). How does the histone code work? Biochemistry and Cell Biology 83, 468-476. (*Corresponding author, Featured on the journal cover, Invited review).
Cosgrove, M.S., Boeke, J.D., and Wolberger, C. (2004). Regulated nucleosome mobility and the histone code. Nature Structural & Molecular Biology 11, 1037-1043. (Highlighted on the Nature Milestones Gene Expression website).
Park J.H., Cosgrove M.S., Youngman E., Wolberger C., and Boeke J.D. (2002) A core nucleosome surface crucial for transcriptional silencing. Nature Genetics 32: 273-9. (Recommended reading by the Faculty of 1000 website).
Avalos J.L., Celic I., Muhammad S., Cosgrove M.S., Boeke J.D., and Wolberger C. (2002) Structure of a Sir2 enzyme bound to an acetylated p53 peptide. Molecular Cell 10: 523-535. (Featured on the journal cover).
Cosgrove M.S.*, Loh S.N., Ha J.H., and Levy H.R. (2002). The catalytic mechanism of glucose 6-phosphate dehydrogenases: assignment and 1H NMR spectroscopy pH titration of the catalytic histidine residue in the 109 kD Leuconostoc mesenteroides enzyme. Biochemistry 41: 6939-6945. (*Corresponding Author).
Naylor C.E., Gover S., Basak A.K., Cosgrove M.S., Levy H.R., and Adams M.J. (2001). NADP+ and NAD+ binding to the dual coenzyme specific enzyme Leuconostoc mesenteroides glucose 6-phosphate dehydrogenase: different inter-domain hinge angles are seen in different binary and ternary complexes. Acta Cryst. D57, 635-648.
Cosgrove M.S., Gover S., Naylor C.E., Vanderputte-Rutten L., Adams M.J., and Levy H.R. (2000). An examination of the role of Asp-177 in the His-Asp catalytic dyad of glucose 6-phosphate dehydrogenase of Leuconostoc mesenteroides: X-ray structure and pH dependence of kinetic parameters of the D177N mutant enzyme. Biochemistry 39, 15002-15011.
Vought V., Ciccone T., Davino M.H., Fairbairn L., Lin Y., Cosgrove M.S., Adams M.J. and Levy H.R. (2000). Delineation of the roles of amino acids involved in the catalytic functions of Leuconostoc mesenteroides glucose 6-phosphate dehydrogenase. Biochemistry 39, 15012-15021.
Cosgrove M.S., Naylor C., Paludan S., Adams M.J., and Levy H.R. (1998). On the mechanism of the reaction catalyzed by glucose 6-phosphate dehydrogenase. Biochemistry 37: 2759-2767.